If you can find the minimum weighted path in your specific case, just reverse the signs of all the weights and apply your algorithm. Of course you are making some unstated assumptions because Moron's argument is correct (no pun intended). The assumptions you are making could be positive weights or no negative weight cycles.
I think you should make an effort to state them instead of letting people search in the infinite space of possible assumptions. As to hardness results, this is also hard to approximate in a number of way, check out this paper. The same paper contains several positive results for important types of graphs, but it's concerned with longest unweighted paths so my guess is that most algorithms in the paper won't directly help in your case.
If you search for "Heavy cycles" you will find a number of interesting papers, but they are more mathematical in character. If your weights are small integers (up to a polynomial in the size of the graph), you can try and replace every edge with an unweighted path to reduce your problem to the unweighted case. I hope this helps to some degree, but you might have an open research problem on your hands.
I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.