Where is the change in the number of particles and is the chemical potential per particle, the energy per added particle required to maintain an unchanged volume and entropy. Where T is kinetic energy and V potential energy. The potential energy doesn't depend on velocities.
The kinetic energy is a quadratic form with regard to velocities. The total energy E depends on the motion of the frame of reference (and it turns out that it is minimum for the center of mass frame). The conservation of energy is a common feature in many physical theories.
From a mathematical point of view it is understood as a consequence of Noether's theorem, which states every continuous symmetry of a physical theory has an associated conserved quantity; if the theory's symmetry is time invariance then the conserved quantity is called "energy". The energy conservation law is a consequence of the shift symmetry of time; energy conservation is implied by the empirical fact that the laws of physics do not change with time itself. Philosophically this can be stated as "nothing depends on time per se".
In other words, if the physical system is invariant under the continuous symmetry of time translation then its energy (which is canonical conjugate quantity to time) is conserved. Conversely, systems which are not invariant under shifts in time (an example, systems with time dependent potential energy) do not exhibit conservation of energy – unless we consider them to exchange energy with another, external system so that the theory of the enlarged system becomes time invariant again. Since any time-varying system can be embedded within a larger time-invariant system, conservation can always be recovered by a suitable re-definition of what energy is.
Conservation of energy for finite systems is valid in such physical theories as special relativity and quantum theory (including QED) in the flat space-time. With the discovery of special relativity by Albert Einstein, energy was proposed to be one component of an energy-momentum 4-vector. Each of the four components (one of energy and three of momentum) of this vector is separately conserved across time, in any closed system, as seen from any given inertial reference frame.
Also conserved is the vector length (Minkowski norm), which is the rest mass for single particles, and the invariant mass for systems of particles (where momenta and energy are separately summed before the length is calculated—see the article on invariant mass). The relativistic energy of a single massive particle contains a term related to its rest mass in addition to its kinetic energy of motion. In the limit of zero kinetic energy (or equivalently in the rest frame) of a massive particle; or else in the center of momentum frame for objects or systems which retain kinetic energy, the total energy of particle or object (including internal kinetic energy in systems) is related to its rest mass or its invariant mass via the famous equation .
Thus, the rule of conservation of energy over time in special relativity continues to hold, so long as the reference frame of the observer is unchanged. This applies to the total energy of systems, although different observers disagree as to the energy value. Also conserved, and invariant to all observers, is the invariant mass, which is the minimal system mass and energy that can be seen by any observer, and which is defined by the energy–momentum relation.
In general relativity conservation of energy-momentum is expressed with the aid of a stress-energy-momentum pseudotensor. The theory of general relativity leaves open the question of whether there is a conservation of energy for the entire universe. In quantum mechanics, energy of a quantum system is described by a self-adjoint (Hermite) operator called Hamiltonian, which acts on the Hilbert space (or a space of wave functions ) of the system.
If the Hamiltonian is a time independent operator, emergence probability of the measurement result does not change in time over the evolution of the system. Thus the expectation value of energy is also time independent. The local energy conservation in quantum field theory is ensured by the quantum Noether's theorem for energy-momentum tensor operator.
Note that due to the lack of the (universal) time operator in quantum theory, the uncertainty relations for time and energy are not fundamental in contrast to the position momentum uncertainty principle, and merely holds in specific cases (See Uncertainty principle). Energy at each fixed time can be precisely measured in principle without any problem caused by the time energy uncertainty relations. Thus the conservation of energy in time is a well defined concept even in quantum mechanics.
Goldstein, Martin, and Inge F. The Refrigerator and the Universe.
I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.