There exists QuickSort implementations that runs on O(nlogn) worst-case, and as for your question, there is no better then O(nlogn) worst case comparison based sort, and as quick sort is 1, it is proved that O(nlogn) is cant be beaten anyway.
There is not a non-inplace version of quicksort. Since it is a recursive divide-et-impera algorithm is easy to show that as you say space complexity is at least O(log n). It can be less as noted if you use the iterative implementation, space compleity will be O(1).
I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.