They are mostly resistive. While there is some capacitance in a Peltier device, it is very negligible, and given the fact that DC is applied, it presents no real barriers in applications. Inductive effects are mostly confined to the leads of the Peltier device and typically present few problems unless the device is being driven with some form of pulsed DC.
If this type of power is employed, it may be advisable to shield the leads and keep them separated from any signal wiring to minimize difficulties. You will see transient inductive effects in the leads whenever power is switched on or off; if these could be problematic, take precautions. The most notable non-resistive characteristic is Seebeck effect.
Just as charge carriers can move heat, the movement of heat through an electrical conductor will carry charge carriers along with it. Thus, whenever a temperature difference is placed across a TE device, a small voltage will develop. If an electrical load is placed across the device ... more.
I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.