Once you've identified a group of cells that needs some chemical substance delivered to it, you can simply release the agent from onboard tanks after the nanorobot arrives on the scene. A 1 cm3 injection of 1-micron nanodevices could probably hold at least 0.5 cm3 of chemical agent. Virtually all of these billions of nanites (in the 1 cm3) will be smart enough to show up at the correct group of cells that are targeted for destruction, so delivery efficiency is virtually 100%.
Onboard sensors can test for ambient levels of the chemical agent, to prevent overdose. However, this question is a good example of an "anachronistic" applicationone that could be done using medical nanorobots, but in fact would probably never be done that way, because in an era of advanced nanotechnology much more efficient and much less destructive ways would exist to get the same job done. In the above example, bulk delivery of cytotoxins to tissue cells is completely unnecessary if the means exists to ... more.
I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.