What is the Voronoi diagram of a square?

Consider a square, C:\qhull>rbox c D2 2 RBOX c D2 4 -0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 0.5 There's two ways to compute the Voronoi diagram: with facet merging or with joggle. With facet merging, the result is: C:\qhull>rbox c D2 | qvoronoi Qz Voronoi diagram by the convex hull of 5 points in 3-d: Number of Voronoi regions and at-infinity: 5 Number of Voronoi vertices: 1 Number of facets in hull: 5 Statistics for: RBOX c D2 | QVORONOI Qz Number of points processed: 5 Number of hyperplanes created: 7 Number of distance tests for qhull: 8 Number of merged facets: 1 Number of distance tests for merging: 29 CPU seconds to compute hull (after input): 0 C:\qhull>rbox c D2 | qvoronoi Qz o 2 2 5 1 -10.101 -10.101 0 0 2 0 1 2 0 1 2 0 1 2 0 1 0 C:\qhull>rbox c D2 | qvoronoi Qz Fv 4 4 0 1 0 1 4 0 2 0 1 4 1 3 0 1 4 2 3 0 1 There is one Voronoi vertex at the origin and rays from the origin along each of the coordinate axes. The last line '4 2 3 0 1' means that there is a ray that bisects input points ... more.

I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.

Related Questions


Thank You!
send