The smoke detector I just installed said it used radioactive Americum 241.
While current technology is very effective at detecting smoke and fire conditions, the deaf and hard of hearing community has raised concerns about the effectiveness of the alerting function in awakening sleeping individuals in certain high risk groups such as the elderly, those with hearing loss and those who are intoxicated. 20 Between 2005 and 2007, research sponsored by the United States' National Fire Protection Association (NFPA) has focused on understanding the cause of a higher number of deaths seen in such high risk groups. Initial research into the effectiveness of the various alerting methods is sparse.
Research findings suggest that a low frequency (520 Hz) square wave output is significantly more effective at awakening high risk individuals. Wireless smoke and carbon monoxide detectors linked to alert mechanisms such as vibrating pillow pads for the hearing impaired, strobes, and remote warning handsets are more effective at waking people with serious hearing loss than other alarms. Most residential smoke detectors run on 9-volt alkaline or carbon-zinc batteries.
When these batteries run down, the smoke detector becomes inactive. Most smoke detectors will signal a low-battery condition. The alarm may chirp at intervals if the battery is low, though if there is more than one unit within earshot, it can be hard to locate.
It is common, however, for houses to have smoke detectors with dead batteries. It is estimated, in the UK, that over 30% of smoke alarms may have dead or removed batteries. As a result, public information campaigns have been created to remind people to change smoke detector batteries regularly.
In Australia, for example, a public information campaign suggests that smoke alarm batteries should be replaced on April Fools' Day every year. 22 In regions using daylight saving time, campaigns may suggest that people change their batteries when they change their clocks or on a birthday. Some detectors are also being sold with a lithium battery that can run for about 7 to 10 years, though this might actually make it less likely for people to change batteries, since their replacement is needed so infrequently.
By that time, the whole detector may need to be replaced. Though relatively expensive, user-replaceable 9-volt lithium batteries are also available. Common NiMH and NiCd rechargeable batteries have a high self-discharge rate, making them unsuitable for use in smoke detectors.
This is true even though they may provide much more power than alkaline batteries if used soon after charging, such as in a portable stereo. Also, a problem with rechargeable batteries is a rapid voltage drop at the end of their useful charge. This is of concern in devices such as smoke detectors, since the battery may transition from "charged" to "dead" so quickly that the low-battery warning period from the detector is either so brief as to go unnoticed, or may not occur at all.
The NFPA, recommends that home-owners replace smoke detector batteries with a new battery at least once per year, when it starts chirping (a signal that its charge is low), or when it fails a test, which the NFPA recommends to be carried out at least once per month by pressing the "test" button on the alarm. In 2004, NIST issued a comprehensive report6 that concludes, among other things, that "smoke alarms of either the ionization type or the photoelectric type consistently provided time for occupants to escape from most residential fires", and "consistent with prior findings, ionization type alarms provided somewhat better response to flaming fires than photoelectric alarms (57 to 62 seconds faster response), and photoelectric alarms provided (often) considerably faster response to smoldering fires than ionization type alarms (47 to 53 minutes faster response)". The NFPA strongly recommends the replacement of home smoke alarms every 10 years.
Smoke alarms become less reliable with time, primarily due to aging of their electronic components, making them susceptible to nuisance false alarms. In ionization type alarms, decay of the 241Am radioactive source is a negligible factor, as its half-life is far greater than the expected useful life of the alarm unit. Regular cleaning can prevent false alarms caused by the build up of dust or other objects such as flies, particularly on optical type alarms as they are more susceptible to these factors.
A vacuum cleaner can be used to clean ionization and optical detectors externally and internally. However, on commercial ionisation detectors it is not recommended for a lay person to clean internally. To reduce false alarms caused by cooking fumes, use an optical or 'toast proof' alarm near the kitchen.
A jury in the United States District Court for the Northern District of New York decided in 2006 that First Alert and its parent company, BRK Brands, was liable for millions of dollars in damages because the ionization smoke alarm in the Hackert's house was a defective design by its nature, typically failing to detect the slow-burning fire and choking smoke that filled the home as the family slept. In the United States, most state and local laws regarding the required number and placement of smoke detectors are based upon standards established in NFPA 72, National Fire Alarm and Signaling Code. Laws governing the installation of smoke detectors vary depending on the locality.
Homeowners with questions or concerns regarding smoke detector placement may contact their local fire marshal or building inspector for assistance. However, some rules and guidelines for existing homes are relatively consistent throughout the developed world. For example, Canada and Australia require a building to have a working smoke detector on every level.
The United States NFPA code cited in the previous paragraph requires smoke detectors on every habitable level and within the vicinity of all bedrooms. Habitable levels include attics that are tall enough to allow access. In new construction, minimum requirements are typically more stringent.
All smoke detectors must be hooked directly to the electrical wiring, be interconnected and have a battery backup. In addition, smoke detectors are required either inside or outside every bedroom, depending on local codes. Smoke detectors on the outside will detect fires more quickly, assuming the fire does not begin in the bedroom, but the sound of the alarm will be reduced and may not wake some people.
Some areas also require smoke detectors in stairways, main hallways and garages. Wired units with a third "interconnect" wire allow a dozen or more detectors to be connected, so that if one detects smoke, the alarms will sound on all the detectors in the network, improving the chances that occupants will be alerted, even if they are behind closed doors or if the alarm is triggered one or two floors from their location. Wired interconnection may only be practical for use in new construction, especially if the wire needs to be routed in areas that are inaccessible without cutting open walls and ceilings.
As of the mid-2000s, development has begun on wirelessly networking smoke alarms, using technologies such as ZigBee, which will allow interconnected alarms to be easily retrofitted in a building without costly wire installations. Some wireless systems using Wi-Safe technology will also detect smoke or carbon monoxide through the detectors, which simultaneously alarm themselves with vibrating pads, strobes and remote warning handsets. As these systems are wireless they can easily be transferred from one property to another.
In the UK the placement of detectors are similar however the installation of smoke alarms in new builds need to comply to the British Standards BS5839 pt6. BS 5839: Pt.6: 2004 recommends that a new-build property consisting of no more than 3 floors (less than 200sqm per floor) should be fitted with a Grade D, LD2 system. Building Regulations in England, Wales and Scotland recommend that BS 5839: Pt.6 should be followed, but as a minimum a Grade D, LD3 system should be installed.
Building Regulations in Northern Ireland require a Grade D, LD2 system to be installed, with smoke alarms fitted in the escape routes and the main living room and a heat alarm in the kitchen, this standard also requires all detectors to have a main supply and a battery back up. Fire detection products have the European Standard EN 54 Fire Detection and Fire Alarm Systems that is a mandatory standard for every product that is going to be delivered and installed in any country in the European Union (EU). EN 54 part 7 is the standard for smoke detectors.
European standard are developed to allow free movement of goods in the European Union countries. EN 54 is widely recognized around the world.
I cant really gove you an answer,but what I can give you is a way to a solution, that is you have to find the anglde that you relate to or peaks your interest. A good paper is one that people get drawn into because it reaches them ln some way.As for me WW11 to me, I think of the holocaust and the effect it had on the survivors, their families and those who stood by and did nothing until it was too late.